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WiFi Sensing: A 10-year Journey

• SP-based: Geometrical Approaches (Reflection Model)

• SP-based: Statistical Approaches (Scattering Model)

• DL-based: Deep Wireless Sensing (Neural Network Model)
• Wireless Data for Learning

• Model Design for Wireless Data

3



Why (Not) Deep Learning?

• Why Not
• Efficient

• Explainable

• Deployable (on IoT)

• Data

• Why
• Enabling more applications that are difficult to achieve with SP alone
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Deep Wireless Sensing

• We will use WiFi signals as example in this lecture

• mmWave and other RF signals are similar

Diagram source: http://tns.thss.tsinghua.edu.cn/wst/docs/intro



Questions to Ask

• Data: How can we collect (sufficient) data for training?

• Feature: What features should be used for learning?

• Model: What models should we use?

• *Deployment: How can the trained models be deployed?



CSI Data for Learning
• Non-visual

• Contain physical and geometric connotations in time, space, and
frequency domains all non-visually intelligible (like images to human eyes)

• (They can certainly be visualized)

• Visual data are visual, of course

• Complex
• Complex-valued tensors with amplitude and phase

• Visual data are real-valued

• High-dimensional
• time, subcarrier, antennas, transceivers

• Visual data are usually 2D (image) or 3D (video)



CSI Datasets

• More difficult to collect
• Much more complex setups

• Less reliable platforms for data collection
• Not always capture valid data

• Not all captured data are useful/meaningful

• Depends on many environmental factors
• Users, device placements, user locations,

user orientations, places/rooms,
environmental factors like furniture, wireless
configs, device heterogeneity…

CSI in Setting 1

CSI in Setting 2



CSI Datasets

• More difficult to label
• Cannot be labelled OFFLINE (unlike images!)

What is this? And this??



CSI Datasets
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• Cannot be labelled OFFLINE (unlike images!)

What are these?



CSI Datasets

• More difficult to label
• Cannot be labelled OFFLINE (unlike images!)

What is this? And this?? And this???



CSI Datasets

• Lack of large-scale datasets
• Widar3 dataset: 17 participants 

performing 22 gestures from 5 
orientations towards one transmitter, 
standing at 5 different locations 
within the coverage of six receivers 
in 3 environments.

• 300K vs. 14M (ImageNet)

• Difficult to learn
• Too many impacting factors



Widar3.0 dataset

https://ieee-dataport.org/open-access/widar-30-wifi-based-
activity-recognition-dataset



From SP to DL

• How to perform signal processing so that the processed data 
would produce better learning performance?

• How to design neural networks so that they will better fit the 
unique wireless data (that are very different from visual data)? 

Model-based
Signal Processing

Data-driven
Deep Learning

model-guided, 
data-driven 

design?



Signal processing vs. Deep learning

• A “sweet point” of balancing SP and DL?

*BVP: Body-coordinate Velocity Profiles (BVPs) proposed in Widar3

Hou, C. Wu, RFBoost: Physical Data Augmentation for Deep Wireless Sensing, ACM IMWUT 2024



Wireless Data Representation

• WiFi CSI

• mmWave radar data

Amplitude Phase Spectrogram

…

Doppler-Range Cube Point Clouds

…
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Wireless Data Representation

• Raw CSI is all you need?
• Complex values

• Amplitude only

• Amplitude + phase

• I/Q-components

RF-Net: A Unified Meta-Learning Framework for RF-enabled One-Shot Human Activity Recognition, SenSys’20



Wireless Data Representation

• DFS: Time-Frequency Spectrograms
• integrate STFT into neural networks by initializing convolutional filter 

weights as the Fourier coefficients.

UniTS: Short-Time Fourier Inspired Neural Networks for Sensory Time Series Classification, SenSys’21



CSI Data Representation

• Widar3: Body-coordinate Velocity Profile (BVP)
• Denoise via SP rather than completely relying on DL

• Theoretically, domain-independent Body-coordinate Velocity Profile

For each activity,
obtain a BVP series:

CNN+RNN for
classification

19Zhang, Y., Zheng, Y., Qian, K., Zhang, G., Liu, Y., Wu, C., & Yang, Z. (2021). Widar3. 0: Zero -effort cross-domain gesture recognition with Wi-Fi. IEEE Transactions on PAMI



Widar3: BVP for Learning

Zhang, Y., Zheng, Y., Qian, K., Zhang, G., Liu, Y., Wu, C., & Yang, Z. (2021). Widar3. 0: Zero -effort cross-domain gesture recognition with Wi-Fi. IEEE Transactions on PAMI



Wireless Data Representation

• BVP
• Theoretically, domain-independent Body-coordinate Velocity Profile

• Denoise via SP rather than completely relying on DL

• However, BVP relies on multiple links and imposes heavy computation

Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi, MobiSys’19



Wireless Data Representation

• What data representation should we use?
• Still ad-hoc, no universal choice today

• Results of a preliminary comparison study

Performance comparison using CSI, DFS, and BVP as inputs on 
different models on Widar3 dataset.



Data Augmentation

• Data augmentation
• A set of techniques that artificially inflate the training samples from 

existing data.

• Increase the amount of data without collecting more

• Has been a common practice and proved effective in CV field

• Image data augmentation
• Random transformation: flipping, cropping, erasing, rotation, 

translation, color space transformation, neural style transfer, etc.



Data Augmentation
• Apply image data augmentation to radio data?

• Radio data, even in the format of images, has different physical meanings

• * rotating a spectrogram will reverse the time and frequency dimensions

• * flipping it will reverse the time series (e.g., a pull gesture can become a push)

• * random erasing can remove the critical part that has frequency responses

• * changing the color space does not bring any new information

Make little sense, but 
may still benefit accuracy
(given certain model and 
available benchmarks)!



Data Augmentation

• Physical Data Augmentation
• Previously: PCA for dimension reduction → one single representative 

spectrograms per tx-rx link

• Recall diversity



Data Augmentation

• Physical Data Augmentation
• Leverage data diversity to augment spectrograms!

TDA FDA SDA
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Hou, C. Wu, RFBoost: Physical Data Augmentation for Deep Wireless Sensing, ACM IMWUT 2024



RFBoost: Physical Data Augmentation

• Physical Data Augmentation
• Time-domain Data Augmentation (TDA): Using different windows for spectrogram generation

• Frequency/Space-domain Data Augmentation (FDA/SDA): Combinations of different
subcarriers/antennas

• Motion-aware Data Augmentation (MDA): Motion-aware Random Erasing and Shifting

• All augmented samples are from physical observations



RFBoost: Performance

Gesture recognition Fall detection

Cross-RX

In-domain



RFBoost: Performance



Data Synthesis/Generation

• Cross-modality training
• Video to Radio

Teaching RF to Sense without RF Training Measurements, IMWUT’20



Data Synthesis/Generation

• Cross-modality training
• IMU to Radio

IMU2Doppler: Cross-Modal Domain Adaptation for Doppler-based Activity Recognition Using IMU Data, IMWUT’21



RF-Diffusion: Radio Signal Generation via 
Time-Frequency Diffusion 
• The AIGC era has arrived, encompassing 

various modalities. 
• Text: ChatGPT, LLaMA, ChatGLM, Claude, …

• Image: Stable Diffusion, DALL·E,  Midjourney, …

• Video: Sora, Imagen Video, CogVideo, …

• Audio: Suno, AudioCraft, WaveNet, …

• Generative AI has mastered most modalities, 
except the RF signal.

How about building an RF Generative Model?



What is the diffusion process?

Chenshu Wu | HKU & Origin Wireless | https://cswu.me 33

A well-trained Diffusion Model recover a learned data distribution 

from a random Gaussian sample, thereby achieving data generation.

Traditional Diffusion Model performs the following two steps:

• Forward Process: gradually inject Gaussian noise to destruct the original data.

• Reverse Process: reconstruct the original distribution from noised data step by step.



From the theoretical perspective, we propose the Time-Frequency Diffusion:

• Forward Process: iteratively add Gaussian noise
     in the time domain, while blurs the spectrum in 
     the frequency domain.

• Reverse Process: reconstruct 𝒙𝑡−1 by denoising 
     𝒙𝑡 in the time domain, while deblurring in the 
     frequency domain.

 

Time-Frequency Diffusion emphasizes 

the time-domain amplitude accuracy 

and the frequency-domain continuity

How to adapt Diffusion to RF?



From the implementation perspective, we 

propose Hierarchical Diffusion Transformer:

• Hierarchicy: HDT is divided into 2 stages, 

the denoising and deblurring stages.

• Complex-valued design: modify the 

attention module and feed-forward 

module to adapt to complex signals.

• Phase modulation: a positional encoding 

scheme tailed for complex-valued signals.

HDT adopts a hierarchical architecture 

to decouple noise and spectrum blur.

How to adapt Diffusion to RF?
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Authentic RF-Diffusion DDPM DCGAN CVAE
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Mixing synthesized wireless data with the original training set to jointly train gesture 

recognition models results in performance improvements:

• In cross-domain scenarios, Widar and EI saw increases of 4.7% and 11.5%, respectively;

• In in-domain situations, Widar and EI experienced gains of 1.8% and 7.5%, respectively;

Cross Domain In Domain

Case Study: Sensing data augmentation



Taking uplink channel CSI as a condition, RF-Diffusion can generate the downlink CSI:

• Compared to the SOTAs, RF-Diffusion achieved over 5.9 dB performance gain;

• The MSE of channel estimation has been reduced by about 70%;

Predicted CSI amplitude and phase SNR Performance

Case Study: Channel Prediction



Data Synthesis/Generation

• GenAI for wireless data generation is a promising direction

• NeRF (Neural Radiance Field) for Radio Frequency

• Open question:
• How to generate large-scale data?

• How to generate large-scale, high-quality data?



SLNet: Spectrogram Learning Neural Network

• Do we need separate design for DWS or not? And how?

SLNet: A Spectrogram Learning Neural Network for Deep Wireless Sensing, NSDI’23

• Many are based on mature CV
models, accurate but quite big

• Existing DWS models are
relatively small but less accurate



SLNet

• An attempt for DWS models
• Based on spectrogram learning



SLNet

• How to generate high-fidelity spectrograms?

• Spectrograms generated by STFT suffer from 
spectral leakage, an inherent issue of FFT.

• SEN: Spectrogram Enhancement Network to 
learn the best function to minimize or nearly 
eliminate the leakage.



SLNet

• How to generate high-fidelity spectrograms?

ideal FFT

LMS SLNet The spectrogram of a pushing and pulling gesture.

STFT spectrogram SEN spectrogram



SLNet

• How to trade-off time-frequency resolution?
• Achieve high frequency resolution by using long windows

• Capture fast-changing frequencies by using short windows

• Use a bank of sliding windows with different lengths
• Concatenated as multiple channels, forming a multi-channel “hologram”

Ideal spectrogram STFT spectrogram (w=251 ms) SEN spectrogram (w=251 ms) SEN spectrogram (w=125 ms)



SLNet

• How does a model simultaneously preserve local dependency 
and global discrimination?

• Problem
• CNN mainly learns local features irrespective of global locations of 

objects in an image

• Not ideal for spectrogram learning, as the global locations, i.e., 
frequencies, are correlated with the physical properties of a person’s 
activities, which is not shift-invariant.



SLNet: Spectrogram Learning NN

• How does a model simultaneously preserve local dependency 
and global discrimination?

• Solution: Polarized Convolutional Network
• Polarize the spectrograms via linearly 

modulated phase information
• Adjacent frequency components have 

similar phases while the distant ones have 
discriminative phases

• Use phases that vary linearly along the 
frequency dimension, making them locally 
unaltered while globally differentiated
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SLNet

• How to learn from the polarized complex-valued spectrograms?

real-valued vs. complex-valued neurons



SLNet

• How well does it work?



SLNet

• How well does it work?
• Multi-user breath estimation

(a) The raw spectrogram from traditional 
FFT. Spectral leakage causes severe 
interference for the close frequency 
components, making it hard to detect 
the breath rates of different people. 

(b) The enhanced 
spectrogram with SEN. 
Frequency components can 
be clearly discriminated. 

(c) The accuracy of breath rate 
estimation with raw and 
enhanced spectrograms.



DWS Models

• There are too many to list…

• Cross-domain generalizability is still a big issue
• which is difficult to verity without a comprehensive dataset.

• Target to solve more challenging problems using DL, because
well-addressed applications do not necessitate DL.

• A step further, Foundation Model for wireless?



Questions?

• Thank you!
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