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WIFi Sensing: A 10-year Journey

« SP-based: Geometrical Approaches (Reflection Model)

« SP-based: Statistical Approaches (Scattering Model)

* DL-based: Deep Wireless Sensing (Neural Network Model)
* Wireless Data for Learning
* Model Design for Wireless Data




Why (Not) Deep Learning?

* Why Not
 Efficient
» Explainable
* Deployable (on loT)
* Data

* Why
« Enabling more applications that are difficult to achieve with SP alone




Deep Wireless Sensing

* We will use WiFi sighals as example in this lecture
« mmWave and other RF signals are similar
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Data Collection and Dataset Preprocessing Feature Algorithm Output

Extraction and Model
Diagram source: http://tns.thss.tsinghua.edu.cn/wst/docs/intro




Questions to Ask

« Data: How can we collect (sufficient) data for training?
« Feature: What features should be used for learning?
* Model: What models should we use?

* *Deployment: How can the trained models be deployed?




CSI Data for Learning

 Non-visual

« Contain physical and geometric connotations in time, space, and
frequency domains all non-visually intelligible (like images to human eyes)

* (They can certainly be visualized)

 Visual data are visual, of course &
« Complex S L
: : ¥ &AL freq
« Complex-valued tensors with amplitude and phase 'y il
 Visual data are real-valued M Lﬂ :
» High-dimensional ey
 time, subcarrier, antennas, transceivers /

 Visual data are usually 2D (image) or 3D (video)

Data Format




CSI| Datasets

 More difficult to collect
 Much more complex setups

 Less reliable platforms for data collection

* Not always capture valid data
* Not all captured data are useful/meaningful

* Depends on many environmental factors

« Users, device placements, user locations,
user orientations, places/rooms,
environmental factors like furniture, wireless
configs, device heterogeneity...

CSlin Setting 1

CSl in Setting 2




CSI| Datasets

* More difficult to label
« Cannot be labelled OFFLINE (unlike images!)
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CSI| Datasets

* More difficult to label
« Cannot be labelled OFFLINE (unlike images!)
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CSI| Datasets

* More difficult to label
« Cannot be labelled OFFLINE (unlike images!)

(b) Wi-Fi matrix. (c) FMCW matrix. (d) IR matrix.

What is this? And this?? And this???




CSI| Datasets

 Lack of large-scale datasets

« Widar3 dataset: 17 participants
performing 22 gestures from 5
orientations towards one transmitter,

standing at 5 different locations
within the coverage of six receivers
In 3 environments.

* 300K vs. 14M (ImageNet)

(a) Wi-Fi CSI in environment 1. (b) Wi-Fi CSI in environment 2.

» Difficult to learn
° TOO m any |m paCtl ng faCtOI’S (c) Feature map of environment 1.  (d) Feature map of environment 2.




Widar3.0 dataset
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From SP to DL

* How to perform signal processing so that the processed data
would produce better learning performance?

« How to design neural networks so that they will better fit the
unigue wireless data (that are very different from visual data)?

Model-based

Data-driven
Signal Processing M Deep Learning

model-guided,
data-driven
design?




Signal processing vs. Deep learning

* A "sweet point” of balancing SP and DL?

| Raw CSI DFS BVP

— £

2 ¢
ly processed Medium processed Highly proce

Signal processing Deep learning
*BVP: Body-coordinate Velocity Profiles (BVPs) proposed in Widar3

Data

Hou, C. Wu, RFBoost: Physical Data Augmentation for Deep Wireless Sensing, ACM IMWUT 2024

Signal

Noise




Wireless Data Representation

* WiFiI CSI

Amplitude

Frequency

 mmWave radar data

X(m)

Doppler-Range Cube Point Clouds




Wireless Data Representation

« Raw CSl is all you need?
« Complex values L .
« Amplitude only 1 i

Base Network
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Wireless Data Representation

 DFS: Time-Frequency Spectrograms

* Integrate STFT into neural networks by initializing convolutional filter
weights as the Fourier coefficients.
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CSl Data Representation

« Widar3: Body-coordinate Velocity Profile (BVP)

* Denoise via SP rather than completely relying on DL
* Theoretically, domain-independent Body-coordinate Velocity Profile

For each activit -
Y, CNN+RNN for
M M Model
Obta|n a BVP series: Classification
2 2
b ‘ atial
Y 73 i = i Extraction
) M ° . 2 n"m b
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(a) Stage 1: Start (b) Stage 2: Pushing (c) Stage 3: Stop (d) Stage 4: Pulling

Zhang, Y. Zheng, Y., Qian, K, Zhang, G, Liu, Y., Wu, C., & Yang, Z. (2021). Widar3. 0: Zero -effort cross-domain gesture recognition with Wi-Fi. IEEE Transactions on PAMI 19




Widar3: BVP for Learning

Domain-1
orientation #1
position #1
environment #1

CSIl in Domain-1 DFS in Domain-1 BVP in Domain-1

Domain-2
orientation #2
position #2
environment #2

>

CSIl in Domain-2 DFS in Domain-2 BVP in Domain-2

Zhang, Y. Zheng, Y., Qian, K, Zhang, G, Liu, Y., Wu, C., & Yang, Z. (2021). Widar3. 0: Zero -effort cross-domain gesture recognition with Wi-Fi. IEEE Transactions on PAMI




Wireless Data Representation

 BVP
* Theoretically, domain-independent Body-coordinate Velocity Profile
« Denoise via SP rather than completely relying on DL
* However, BVP relies on multiple links and imposes heavy computation
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Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi, MobiSys’19




Wireless Data Representation

 What data representation should we use?
« Still ad-hoc, no universal choice today

* Results of a preliminary comparison study
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Performance comparison using CSI, DFS, and BVP as inputs on
different models on Widar3 dataset.




Data Augmentation

« Data augmentation

« A set of techniques that artificially inflate the training samples from
existing data.

* Increase the amount of data without collecting more
« Has been a common practice and proved effective in CV field

* Image data augmentation

« Random transformation: flipping, cropping, erasing, rotation,
translation, color space transformation, neural style transfer, etc.

| A

Original Crop Rotate Translation




Data Augmentation

* Apply image data augmentation to radio data?
* Radio data, even in the format of images, has different physical meanings
* rotating a spectrogram will reverse the time and frequency dimensions
* flipping it will reverse the time series (e.g., a pull gesture can become a push)
* random erasing can remove the critical part that has frequency responses
* changing the color space does not bring any new information

Make little sense, but
may still benefit accuracy
(given certain model and
available benchmarks)!

e | T

Original Crop Rotate Translation Flip-x Erase Color




Data Augmentation

* Physical Data Augmentation

* Previously: PCA for dimension reduction - one single representative
spectrograms per tx-rx link

« Recall diversity
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Data Augmentation

* Physical Data Augmentation
* Leverage data diversity to augment spectrograms!
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Hou, C. Wu, RFBoost: Physical Data Augmentation for Deep Wireless Sensing, ACM IMWUT 2024




RFBoost: Physical Data Augmentation

* Physical Data Augmentation

 Time-domain Data Augmentation (TDA): Using different windows for spectrogram generation

* Frequency/Space-domain Data Augmentation (FDA/SDA): Combinations of different
subcarriers/antennas

« Motion-aware Data Augmentation (MDA): Motion-aware Random Erasing and Shifting

 All augmented samples are from physical observations




RFBoost: Performance
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RFBoost: Performance
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Data Synthesis/Generation

« Cross-modality training
* Video to Radio

Available Generating Massive
Online Video Dataset for
Videos Sensing Task of Interest

Real Wil Simulated Wik

~ 100 100

Frequency (Hz

Irequency (Hz)

0 | 2 3 i a 1 2 3

Time (sec) I'ime (sec)

(a) Stiff-leg deadlift

Teaching RF to Sense without RF Training Measurements, IMWUT’20

3D Reconstruction
of Human Shape
via Human
Mesh Recovery

3D Mesh Alignment

0.5 quantiles
1K) |

| |— Real WiFi
1 - - Simulated WiFi

0 =TT .
0 | 2 3 1

| | = Real WiFi
- - Simulated WiFi|

100

[ S N % Y
0 1 2 3 4

I'ime (sec)

Eigen-Analysis on Torso

to Determine LCS

Aligning LCS to GCS

Frequency (Hz)

Frequency (Hz)

RF Signal Simulation

RF Transceiver
Placement :
Feature Extraction '[h'mne::'l
- " RF Sensing
and Training
System

‘Wave Propagation
Modeling

Real Wil Simulated Wika 0.5 quantiles
¢
® [ Real WiFi

|~ - Simulated VWiFl;

i} | 2
L —

. — Real WiFi

[l=:= Simulated WiF1

'_,,a_»-ﬂim
(. S e=WT» 3

i} 1 2

I'ime (sec)

I'ime {sec) I'me (sec)

(b) Forward Lunge



Data Synthesis/Generation

« Cross-modality training

DRIBBLING CLAPPING CATCHING

DRINKING

A\ N—
: \WP}L 1 i
‘ & |
: w il

* htohethepiohp

 IMU to Radio

/1 A A
7 A\
allTa

i

&

Doppler Sample (XD“_V.,”)
6x3 160

Lol tfo]of o o] of o] of o]

Label (1)

IMU Sample (Y, )

Y

Training Triplet

Depth = 96

Depth = 256
rr————

Conv Unit

Forward
Layer

128 units

o

Conv Unit
5x5, Stride 2x2
Rel.U, Max Pool

Pre-Trained IMU Model (M

Backward
Layer

128 units

IMU2Doppler: Cross-Modal Domain Adaptation for Doppler-based Activity Recognition Using IMU Data, IMWUT’21

Depth = 512

Conv Unit

5, Stride 1x1

RelLU,

Ul

% Doppler

Illl)

Rell)

Max Pool

Softmax
10

Softmax
: FC
S
Y Y
W ., .
| Classification :
| Loss 1
jl’ ~ Domain !
 Discrepancy _,
Multi-Task
Loss

e "I‘\'IB'




RF-Diffusion: Radio Signal Generation via

DALL E‘3

Time-Frequency Diffusion

* The AIGC era has arrived, encompassing
various modalities.
« Text: ChatGPT, LLaMA, ChatGLM, Claude, ...
* Image: Stable Diffusion, DALL-E, Midjourney, ...
* Video: Sora, Imagen Video, CogVideo, ...
« Audio: Suno, AudioCraft, WaveNet, ...

 Generative Al has mastered most modalities,
except the RF signal.

How about building an RF Generative Model? @ChatG PT




What is the diffusion process?

Traditional Diffusion Model performs the following two steps:

* Forward Process: gradually inject Gaussian noise to destruct the original data.

Q(Xt|xt 1)
O O @~

* Reverse Process: reconstruct the original distribution from noised data step by step.

Po(Xe—1|%¢)
On ~ @ @z —Cp
ﬁ%’ = o

Q A well-trained lefusmn Model recover a learned data distribution

from a random Gaussian sample, tereb achieving data generation.




How to adapt Diffusion to RF?

From the theoretical perspective, we propose the Time-Frequency Diffusion:
=

§3.1 Forward Time-Frequency Diffusion
@ Time-series ]_@
Noise
- & | Wil
* Reverse Process: reconstruct x,_, by denoising ‘ @q(xt,xt 1)@ @
x; in the time domain, while deblurring in the

* Forward Process: iteratively add Gaussian noise
in the time domain, while blurs the spectrum in f\//\/
the frequency domain.

i i — Xt |Jo— *+» «—
frequency domain. (%) @pe(xt llxtQ =)
7 ~\ §3.2 Reverse Time-Frequency Diffusion )
Time-Frequency Diffusion emphasizes e \

th time-domain amplitude accuracy
.and the frequency-domain continuity A\

§4 Hierarchical Diffusion i
I Transformer i




How to adapt Diffusion to RF?

From the implementation perspective, we - d 2 N[ e b
1 | t—1 /
/ t / Feedforward
o o o o Deblur
propose Hierarchical Diffusion Transformer: [_3 [,’ peedoere / Sy
ﬁf_l / Layer Norm / éi_)
. ° . « . . / /
* Hierarchicy: HDT is divided into 2 stages, | Concatente. —
a0 2@ a® / B x Diffusion Block ] cross'A:temion
« o . M - \ (ADB) Layer Norm
the denoising and deblurring stages. ’ 1 j@
g g § Phase- ondition \
o . ? ? ? \ modula.tion d(i:ffu(sji;n stfp \\ Multi-head
* Complex-valued design: modify the ‘ 1 Ercoding | empeaing
J‘l:t xlt xlt \ | | \ Adaptive fﬁ e
. . o Layer Norm (adaLN)
attention module and feed-forward ©oe mputsgnalx N« e Y L— |
module to adapt to complex signals. (A B
Q HDT adopts a hierarchical architecture
* Phase modulation: a positional encoding| to decouple noise and spectrum blur.
. J

scheme tailed for complex-valued signals.




Evaluation Results
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Case Study: Sensing data augmentation

Mixing synthesized wireless data with the original training set to jointly train gesture
recognition models results in performance improvements:
* In cross-domain scenarios, Widar and El saw increases of 4.7% and 11.5%, respectively;

* Inin-domain situations, Widar and El experienced gains of 1.8% and 7.5%, respectively;
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Case Study: Channel Prediction

Taking uplink channel CSI as a condition, RF-Diffusion can generate the downlink CSI:
 Compared to the SOTAs, RF-Diffusion achieved over 5.9 dB performance gain;

 The MSE of channel estimation has been reduced by about 70%;
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Data Synthesis/Generation

» GenAl for wireless data generation is a promising direction
 NeRF (Neural Radiance Field) for Radio Frequency

* Open question:
« How to generate large-scale data?
* How to generate large-scale, high-quality data?




SLNet: Spectrogram Learning Neural Network

* Do we need separate design for DWS or not? And how?

98 1
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Computer
Vision VGG-16

O
oY

« Many are based on mature CV
models, accurate but quite big

« Existing DWS models are

O
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SLNet: A Spectrogram Learning Neural Network for Deep Wireless Sensing, NSDI’23
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SLNet

« An attempt for DWS models
« Based on spectrogram learning

Spectrogram Enhancement Fusion Task-Adaptive Network (TAN)

Compression Teak #1
E Task #n
Flatten

Polarized Convolutional

E I Network (ch
g

Polarized

Hologram




SLNet

* How to generate high-fidelity spectrograms?

Data Synthesls
Leaked
T Emrm ‘ mm Random
e Spectrograms generated by STFT suffer from _ Generator
. . Fr
spectral leakage, an inherent issue of FFT. — % MSE Loss
’ ’ for m.‘r:_uf:tmie
Xleaked "'mx b LR TR .
e SEN: Spectrogram Enhancement Network to él H
learn the best function to minimize or nearly Xy SEN .y
eliminate the leakage.
umured SEN Enhanced
Inference g r]l I -E Si um Inference
.‘nput E E 1 I ﬂut_imr
Fruq;anny Fraq;ancy

Model Training




SLNet

* How to generate high-fidelity spectrograms?
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SLNet

« How to trade-off time-frequency resolution?
* Achieve high frequency resolution by using long windows
« Capture fast-changing frequencies by using short windows

« Use a bank of sliding windows with different lengths
« Concatenated as multiple channels, forming a multi-channel “hologram”
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|Ideal spectrogram STFT spectrogram (w=251ms) SEN spectrogram (w=251 ms) SEN spectrogram (w=125 ms)




SLNet

 How does a model simultaneously preserve local dependency
and global discrimination?

 Problem

« CNN mainly learns local features irrespective of global locations of
objects in an image

* Not ideal for spectrogram learning, as the global locations, i.e.,
frequencies, are correlated with the physical properties of a person’s
activities, which is not shift-invariant.




SLNet: Spectrogram Learning NN

 How does a model simultaneously preserve local dependency
and global discrimination?

e Solution: Polarized Convolutional Network

 Polarize the spectrograms via linearly
modulated phase information

« Adjacent frequency components have
similar phases while the distant ones have
discriminative phases

« Use phases that vary linearly along the
frequency dimension, making them locally
unaltered while globally differentiated




SLNet

* How to learn from the polarized complex-valued spectrograms?

Kernel

505~

x =o(lwx+hb)

IShared bias — real-valued vs. complex-valued neurons

weights x 1

X
Complex- 4
e o
Real Imag x' = o(E(wix —wzy) + by)
Real-valued ¥ =o(B(wyy + wex) + By



SLNet

« How well does it work?

Modality Ref. Gesture Gait Fall' Para®
[23,90] 90.6% 95.1% 92.8%,96.3% 1.07M

WiFi [8,22] 89.0% 96.6% 96.4%,84.3% 2.72M
[39,79] 84.3% 83.3% 96.8%,93.8% 5.77M

(73] 78.9% 70.9% 95.5% 96.8% 0.06M

FMCW [87] 88.0% 954% 96.0%,96.0% 1.06M
[84, 86] 91.6% 96.4% 99.7%,95.7% 2.76M

Acoustic  [30] 89.6% 95.4% 90.6%,98.3% 6.08M
[40] 88.3% 90.1% 95.3%, 95.3% 128.8M

Vision [15] 91.9% 96.6% 97.0%,95.6% 11.18M
[20] 91.0% 97.7% 99.8%,96.3% 6.96M

CVNN [17,32] 723% 96.0% 95.2%,93.7% 115.6M
[46] 92.0% 96.3% 98.4%,93.8% 2.94M

WiFi SLNET 96.6% 98.9% 99.8%, 97.2% 1.48M




SLNet

« How well does it work?
 Multi-user breath estimation
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(a) The raw spectrogram from traditional  (b) The enhanced (c) The accuracy of breath rate
FFT. Spectral leakage causes severe spectrogram with SEN. estimation with raw and
interference for the close frequency Frequency components can enhanced spectrograms.
components, making it hard to detect be clearly discriminated.

the breath rates of different people.




DWS Models

* There are too many to list...

« Cross-domain generalizability is still a big issue
 which is difficult to verity without a comprehensive dataset.

 Target to solve more challenging problems using DL, because
well-addressed applications do not necessitate DL.

A step further, Foundation Model for wireless?




Questions?

* Thank you!
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